Minor in AIML and Data Science

Programming and Data Science

Course Code		Course Name
MI-BT051		Programming and Data Science
Course requisites	pre-	

Course Objectives

- 1. Learn Python programming from basics.
- 2. Use Python tools to work with simple datasets.
- 3. Understand basic statistics used in data analysis.

Course Outcomes

- 1. Write Python code for simple data tasks.
- 2. Use NumPy and Pandas to clean and organize data.
- 3. Make graphs and charts with Matplotlib and Seaborn.
- 4. Understand basic statistics like mean and standard deviation.

	Course Content	
Module No	Details	Hrs
1	 Python Programming Basics Variables, data types (integers, strings, lists) Operators, expressions, and basic input/output Conditional statements (if-else), loops (for, while) 	06
2	 Functions and File Handling Defining and calling functions Parameters, return values, and scope Reading from and writing to text and CSV files 	06
3	 Introduction to NumPy Creating arrays, indexing, and slicing Basic array operations and mathematical functions Array broadcasting and reshaping 	06
4	 Data Handling with Pandas Creating and using Series and DataFrames 	06

	 Reading data from CSV, Excel, and JSON files Filtering, sorting, merging, and grouping data 	
	Data Visualization	06
5	 Introduction to Matplotlib and Seaborn Creating line plots, bar charts, histograms, and scatter plots Customizing plots with labels, legends, and titles 	
6	 Data Cleaning and Preprocessing Identifying and handling missing data Encoding categorical variables Scaling and normalizing features 	04
7	 Basic Statistics and Probability Measures of central tendency (mean, median, mode) Measures of dispersion (range, variance, standard deviation) Basics of probability and normal distribution 	08

- Python for Data Analysis by Wes McKinney
 Think Python by Allen B. Downey
 Head First Statistics by Dawn Griffiths

References

- NPTEL: "Python for Data Science" by IIT Madras
- Google Colab tutorials, Kaggle beginner Python exercises

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	3								1	1
CO2	3	2	2	1	3								1	1
CO3	2	2	2	1	3								1	1
CO4	3	3	2	1	2								1	1

Machine Learning and Statistical Modeling

Course Code		Course Name
MI-BT052		Machine Learning and Statistical Modeling
Course requisites	pre-	Linear algebra, Probability and statistics

Course Objectives

- 1. Learn simple machine learning techniques.
- 2. Use statistics to test and improve models.
- 3. Understand supervised and unsupervised learning.

Course Outcomes

- 1. Explain how basic ML models work.
- 2. Build and test simple models like linear regression and decision trees.
- 3. Use accuracy and confusion matrix to check model quality.
- 4. Create a simple ML pipeline using Python.

Course Content Module								
Details	Hrs							
Math for Machine Learning	06							
Basics of vectors, matrices, dot products								
 Understanding probability and statistics Cost functions and how models learn 								
Linear and Logistic Regression	06							
Simple and multiple linear regression								
 Logistic regression for classification 								
• Using scikit-learn to build models								
Tree-Based Models	06							
Decision trees for classification and regression								
 Introduction to Random Forest 								
• Basics of Support Vector Machines (SVM)								
Clustering and Dimensionality Reduction	06							
K-Means and Hierarchical Clustering								
DBSCAN for density-based clustering								
 PCA for reducing data dimensions 								
	 Math for Machine Learning Basics of vectors, matrices, dot products Understanding probability and statistics Cost functions and how models learn Linear and Logistic Regression Simple and multiple linear regression Logistic regression for classification Using scikit-learn to build models Tree-Based Models Decision trees for classification and regression Introduction to Random Forest Basics of Support Vector Machines (SVM) Clustering and Dimensionality Reduction K-Means and Hierarchical Clustering DBSCAN for density-based clustering 							

	Model Evaluation	06
5	 Accuracy, precision, recall, F1-score Confusion matrix, ROC curve, AUC K-fold cross-validation 	
	Feature Engineering	06
	Selecting and extracting features	
6	Handling missing and categorical data	
	Normalizing and scaling features	
	ML Pipeline and Case Studies	06
_	Steps of an ML pipeline (preprocessing to prediction)	
7	Case studies using open datasets	
	Python project with train/test split and evaluation	

- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien Géron An Introduction to Statistical Learning by Gareth James et al.

References

- NPTEL: "Machine Learning" by Prof. P. Abinash (IIT Kharagpur)
- scikit-learn official documentation

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	3								1	1
CO2	3	2	2	1	3								1	1
CO3	2	2	2	1	3								1	1
CO4	3	3	2	1	3								1	1

Artificial Intelligence and Deep Learning

Course Code		Course Name
MI-BT053		Artificial Intelligence and Deep Learning
Course requisites	pre-	

Course Objectives

- 1. Learn what AI is and how it is used.
- 2. Understand how deep learning works.
- 3. Use tools like TensorFlow or PyTorch for projects.

Course Outcomes

- 1. Explain search algorithms in AI.
- 2. Build and train a basic neural network.
- 3. Use CNNs for images and RNNs for sequences.
- 4. Use AI tools for small tasks.

Course Content								
Module No	Details	Hrs						
	Introduction to AI	06						
	What is Artificial Intelligence?							
1	Examples from everyday life: navigation, voice assistants							
	Simple AI uses in electrical, civil and mechanical: traffic systems, smart buildings							
	Search Algorithms	06						
2	Finding best solutions: BFS, DFS in simple terms							
	Applications: robot movement, path planning in warehouses							
	Basics of Neural Networks	06						
3	How machines learn from data							
3	Simple concepts: neurons, weights, layers							
	Use cases: prediction of material strength, energy load							
	Multi-layer Perceptron (MLP)	06						
	Training a deeper neural network							
4	Understanding learning rate and epochs							
	Example: Predicting house prices or machine failure							

	CNN for Image Data	06
5	 What is image classification? Simple CNN layers explained Example: crack detection in concrete images 	
	RNN for Sequence Data	06
6	 Learning from time-based data Applications: weather forecasting, equipment usage pattern Basics of LSTM and how memory works in AI 	
	Tools and Practice	06
7	 Using TensorFlow, Keras or PyTorch easily with examples Mini-projects with real data How to build a basic app using your model (Streamlit) 	

- Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
- Artificial Intelligence: A Modern Approach by Stuart Russell & Peter Norvig

References

- Neural Networks and Deep Learning by Michael Nielsen
- PyTorch & TensorFlow documentation
- NPTEL: "Deep Learning" by Prof. Balakrishnan (IIT Madras)

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	3								1	1
CO2	3	2	2	1	3								1	1
CO3	2	2	2	1	3								1	1
CO4	3	3	2	1	3								1	1

Advanced Data Science and Applications

Course Code		Course Name
MI-BT054		Advanced Data Science and Applications
Course requisites	pre-	

Course Objectives

- 1. Use advanced ML tools for real-world data.
- 2. Learn basic big data tools like PySpark.
- 3. Complete a project with deployment.

Course Outcomes

- 1. Use tools like XGBoost for real data problems.
- 2. Use PySpark to handle large data.
- 3. Build a simple recommender system.
- 4. Make and show a final project using Streamlit.

Course Content								
Module No	Details							
1	Advanced ML Algorithms							
	Introduction to ensemble methods: bagging, boosting							
	Using XGBoost and LightGBM with scikit-learn							
	Use cases: defect prediction in structures, energy consumption models							
	Big Data Tools Overview	06						
2	What is big data? Why is it important?							
	Basics of Hadoop and Spark							
	• Using PySpark to handle simple large files (CSV/logs)							
3	Time-Series Forecasting							
	Understanding trends and seasonal data							
	ARIMA and Facebook Prophet for forecasting							
	Example: weather, load, or demand prediction in infrastructure							
	Recommender Systems	06						
4	What are recommendation systems?							
	Collaborative vs. content-based filtering							
		1						

	Natural Language Processing (NLP)	06
5	 What is text data? Simple preprocessing (cleaning, tokenizing) Text classification: feedback analysis or issue sorting Tools: NLTK, basic Hugging Face models 	
6	 Model Deployment Making ML models usable by others Flask/Streamlit for web-based apps Packaging with GitHub and Docker (simple intro) 	06
7	 Project, Ethics and Explainability Small project integrating learning from all modules Concepts of fairness, bias, and transparency in ML Use of Explainable AI (XAI) tools like SHAP or LIME 	06

- Data Science from Scratch by Joel Grus
- Practical Statistics for Data Scientists by Peter Bruce

References

- Forecasting: Principles and Practice by Rob J. Hyndman (free online)
 NPTEL: "Big Data Computing" IIT Patna
 Kaggle and UCI ML Repositories (for projects)s

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	3								1	1
CO2	3	2	2	1	3								1	1
CO3	2	2	2	1	3								1	1
CO4	3	3	2	1	3								1	1

Suggested Tools and Platforms

- **Languages**: Python (primary), R (optional for stats)
- IDEs: Jupyter Notebook, VS Code, Google Colab
- **Libraries**: Pandas, Scikit-Learn, TensorFlow, Keras, PyTorch, Matplotlib, Seaborn, NLTK, SpaCy, XGBoost
- Datasets: UCI, Kaggle, OpenML, real-world case data (CSV, JSON)